Calculer et compter tous les diviseurs communs de 11.520 et 0. Calculatrice en ligne

Les diviseurs communs des nombres 11.520 et 0 ?

Les diviseurs communs des nombres 11.520 et 0 sont tous les facteurs de leur 'plus grand commun diviseur', pgcd


Calculer le plus grand commun diviseur, pgcd:

Zéro est divisible par n'importe quel nombre autre que zéro (il n'y a pas de reste en le divisant par un autre nombre).

Le plus grand diviseur du nombre 11.520 est le nombre lui-même.


⇒ pgcd (11.520; 0) = 11.520




Pour trouver tous les diviseurs du 'pgcd', il faut le décomposer en facteurs premiers.

La décomposition en facteurs premiers (la factorisation première) d'un nombre : trouver les nombres premiers qui se multiplient ensemble pour former ce nombre.


11.520 = 28 × 32 × 5
11.520 n'est pas un nombre premier mais un composé.



* Les nombres naturels qui ne sont divisibles que par 1 et eux-mêmes sont appelés nombres premiers. Un nombre premier a exactement deux diviseurs : 1 et lui-même.
* Un nombre composé est un nombre naturel qui a au moins un autre diviseur que 1 et lui-même.



Comment compter le nombre de diviseurs d'un nombre ?

Si un nombre N est décomposé en facteurs premiers comme :
N = am × bk × cz
où a, b, c sont les facteurs premiers et m, k, z sont leurs exposants, nombres naturels, ....


Alors le nombre de diviseurs du nombre N peut être calculé de cette façon :
n = (m + 1) × (k + 1) × (z + 1)


Dans notre cas, le nombre de diviseurs est calculé comme :

n = (8 + 1) × (2 + 1) × (1 + 1) = 9 × 3 × 2 = 54

Mais pour calculer réellement les diviseurs, voir ci-dessous...

3. Multipliez les facteurs premiers du 'pgcd' :

Multiplier les facteurs premiers impliqués dans la décomposition en facteurs premiers (la factorisation première) du PGCD dans toutes leurs combinaisons uniques, qui donnent des résultats différents.


Considérez également les exposants des facteurs premiers (exemple : 32 = 3 × 3 = 9).


Ajoutez également 1 à la liste des diviseurs. Tous les nombres sont divisibles par 1.


Tous les diviseurs sont listés ci-dessous - par ordre croissant

La liste des diviseurs:

ni premier ni composé = 1
facteur premier = 2
facteur premier = 3
22 = 4
facteur premier = 5
2 × 3 = 6
23 = 8
32 = 9
2 × 5 = 10
22 × 3 = 12
3 × 5 = 15
24 = 16
2 × 32 = 18
22 × 5 = 20
23 × 3 = 24
2 × 3 × 5 = 30
25 = 32
22 × 32 = 36
23 × 5 = 40
32 × 5 = 45
24 × 3 = 48
22 × 3 × 5 = 60
26 = 64
23 × 32 = 72
24 × 5 = 80
2 × 32 × 5 = 90
25 × 3 = 96
Cette liste continue ci-dessous...

... Cette liste continue d'en haut
23 × 3 × 5 = 120
27 = 128
24 × 32 = 144
25 × 5 = 160
22 × 32 × 5 = 180
26 × 3 = 192
24 × 3 × 5 = 240
28 = 256
25 × 32 = 288
26 × 5 = 320
23 × 32 × 5 = 360
27 × 3 = 384
25 × 3 × 5 = 480
26 × 32 = 576
27 × 5 = 640
24 × 32 × 5 = 720
28 × 3 = 768
26 × 3 × 5 = 960
27 × 32 = 1.152
28 × 5 = 1.280
25 × 32 × 5 = 1.440
27 × 3 × 5 = 1.920
28 × 32 = 2.304
26 × 32 × 5 = 2.880
28 × 3 × 5 = 3.840
27 × 32 × 5 = 5.760
28 × 32 × 5 = 11.520

11.520 et 0 ont 54 diviseurs communs:
1; 2; 3; 4; 5; 6; 8; 9; 10; 12; 15; 16; 18; 20; 24; 30; 32; 36; 40; 45; 48; 60; 64; 72; 80; 90; 96; 120; 128; 144; 160; 180; 192; 240; 256; 288; 320; 360; 384; 480; 576; 640; 720; 768; 960; 1.152; 1.280; 1.440; 1.920; 2.304; 2.880; 3.840; 5.760 et 11.520
dont 3 facteurs premiers: 2; 3 et 5

Diviseurs, diviseurs communs, le plus grand commun diviseur, pgcd

  • Note 1 : La décomposition d'un nombre en facteurs premiers (la factorisation première d'un nombre) consiste à écrire un nombre naturel supérieur à 1 sous la forme d'un produit de nombres premiers.
  • Note 2 : 23 = 2 × 2 × 2 = 8. On dit 2 à la puissance 3 - ou - 2 exposant 3. Dans cet exemple, 3 est l'exposant et 2 la base. L'exposant indique combien de fois la base est multipliée par elle-même. 23 est la puissance et 8 est la valeur de la puissance.
  • Si le nombre "t" est un diviseur du nombre "a", alors dans la décomposition en facteurs premiers de "t", nous ne rencontrerons que des facteurs qui interviennent également dans la décomposition en facteurs premiers de "a".
  • S'il y a des exposants impliqués, la valeur maximale d'un exposant pour toute base d'une puissance qui se trouve dans la décomposition en facteurs premiers de "t" est au plus égale à l'exposant de la même base qui est impliquée dans la décomposition en facteurs premiers de "a".
  • Par example, 12 est un diviseur de 120 - le reste est égal à zéro en divisant 120 par 12.
  • Examinons la décomposition en facteurs premiers des deux nombres et remarquons les bases et les exposants qui apparaissent dans la factorisation première des deux nombres :
  • 12 = 2 × 2 × 3 = 22 × 3
  • 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
  • 120 contient tous les facteurs premiers de 12, et tous les exposants de ses bases sont supérieurs à ceux de 12.
  • Si "t" est un diviseur commun de "a" et "b", alors la décomposition en facteurs premiers de "t" ne contient que les facteurs premiers communs impliqués dans la décomposition en facteurs premiers de "a" et "b ".
  • S'il y a des exposants impliqués, la valeur maximale d'un exposant pour toute base d'une puissance qui se trouve dans la factorisation première de "t" est au plus égale au minimum des exposants de la même base qui est impliquée dans la factorisation première à la fois "a" et "b".
  • Par example, 12 est un diviseur commun de 48 et 360.
  • Le reste est égal à zéro lors de la division de 48 par 12 ou de 360 par 12.
  • Voici la décomposition en facteurs premiers des trois nombres, 12, 48 et 360 :
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • Veuillez noter que 48 et 360 ont plusieurs diviseurs : 2, 3, 4, 6, 8, 12, 24. Parmi eux, 24 est le plus grand commun diviseur, pgcd, de 48 et 360.
  • Le plus grand commun diviseur, pgcd, de deux nombres, "a" et "b", est le produit de tous les facteurs premiers communs impliqués dans les factorisations premières de "a" et "b", multiplié par les exposants les plus bas.
  • Sur la base de cette règle, on calcule le plus grand commun diviseur, pgcd, de plusieurs nombres, comme le montre l'exemple ci-dessous...
  • pgcd (1.260 ; 3.024 ; 5.544) = ?
  • 1.260 = 22 × 32
  • 3.024 = 24 × 32 × 7
  • 5.544 = 23 × 32 × 7 × 11
  • Les facteurs premiers communs sont :
  • 2 - son exposant le plus bas est : min.(2 ; 3 ; 4) = 2
  • 3 - son exposant le plus bas est : min.(2 ; 2 ; 2) = 2
  • pgcd (1.260 ; 3.024 ; 5.544) = 22 × 32 = 252
  • Nombres premiers entre eux :
  • Si deux nombres "a" et "b" n'ont pas d'autre diviseur commun que 1, pgcd (a ; b) = 1, alors les nombres "a" et "b" sont dits premiers entre eux.
  • Les diviseurs du PGCD
  • Si "a" et "b" ne sont pas premiers entre eux, alors chaque diviseur commun de "a" et "b" est aussi un diviseur du plus grand diviseur commun, pgcd, de "a" et "b".