303.803 et 0 : Calculer tous les diviseurs communs des deux nombres (et les facteurs premiers)
Les diviseurs communs des nombres 303.803 et 0
Les diviseurs communs des nombres 303.803 et 0 sont tous les facteurs de leur 'plus grand diviseur commun'.
Rappelez-vous:
Un diviseur d'un nombre naturel 'A' est un nombre naturel 'B' qui, multiplié par un autre nombre naturel 'C', est égal au nombre donné 'A':
A = B × C. Exemple: 60 = 2 × 30.
'B' et 'C' sont des diviseurs de 'A' et 'A' est divisé par les deux sans reste.
Calculer le plus grand diviseur commun, pgcd:
pgcd (0; n1) = n1, où n1 est un nombre naturel.
pgcd (303.803; 0) = 303.803
Zéro est divisible par n'importe quel nombre autre que zéro (il n'y a pas de reste en le divisant par un autre nombre)
Etape préliminaire à effectuer avant de trouver tous les diviseurs :
Pour trouver tous les diviseurs du 'pgcd', il faut le décomposer en facteurs premiers, pour l'écrire comme un produit de nombres premiers.
La décomposition en facteurs premiers (la factorisation première) du plus grand commun diviseur:
La décomposition en facteurs premiers (la factorisation première) d'un nombre : trouver les nombres premiers qui se multiplient ensemble pour former ce nombre.
303.803 est un nombre premier et ne peut être décomposé en d'autres facteurs premiers.
* Les nombres naturels qui ne sont divisibles que par 1 et eux-mêmes sont appelés nombres premiers. Un nombre premier a exactement deux diviseurs : 1 et lui-même.
* Un nombre composé est un nombre naturel qui a au moins un autre diviseur que 1 et lui-même.
Trouver tous les diviseurs du plus grand commun diviseur, pgcd
303.803 est un nombre premier et ne peut être décomposé en d'autres facteurs premiers.
Un nombre premier a exactement deux diviseurs : 1 et lui-même.
Tous les diviseurs sont listés ci-dessous - par ordre croissant
La liste des diviseurs:
ni premier ni composé =
1
facteur premier =
303.803
La réponse finale:
(défiler vers le bas)
303.803 et 0 ont 2 diviseurs communs:
1 et 303.803
dont 1 facteur premier: 303.803
Un moyen rapide de trouver les diviseurs d'un nombre est d'abord de le décomposer en nombres premiers (sa factorisation première).
Multipliez ensuite les facteurs premiers dans toutes les combinaisons possibles qui conduisent à des résultats différents et tenez également compte de leurs exposants, s'il y en a.
Autres opérations similaires aux diviseurs communs :
Les 5 derniers ensembles de diviseurs calculés : d'un nombre ou tous les diviseurs communs de deux nombres
Calculer tous les diviseurs (et les facteurs premiers) des nombres donnés
Comment calculer (trouver) tous les diviseurs (propres, impropres et facteurs premiers) d'un nombre :
Décomposer le nombre en facteurs premiers (faire la factorisation première du nombre). Multipliez ensuite ses facteurs premiers dans toutes leurs combinaisons uniques, qui donnent des résultats différents.
Pour calculer les diviseurs communs de deux nombres :
Les diviseurs communs de deux nombres sont tous les diviseurs du plus grand commun diviseur, pgcd.
Calculer le plus grand commun diviseur des deux nombres, pgcd.
Décomposer le PGCD en facteurs premiers. Multipliez ensuite ses facteurs premiers dans toutes leurs combinaisons uniques, qui donnent des résultats différents.
Diviseurs, diviseurs communs, le plus grand commun diviseur, pgcd
- Note 1 : La décomposition d'un nombre en facteurs premiers (la factorisation première d'un nombre) consiste à écrire un nombre naturel supérieur à 1 sous la forme d'un produit de nombres premiers.
- Note 2 : 23 = 2 × 2 × 2 = 8. On dit 2 à la puissance 3 - ou - 2 exposant 3. Dans cet exemple, 3 est l'exposant et 2 la base. L'exposant indique combien de fois la base est multipliée par elle-même. 23 est la puissance et 8 est la valeur de la puissance.
- Si le nombre "t" est un diviseur du nombre "a", alors dans la décomposition en facteurs premiers de "t", nous ne rencontrerons que des facteurs qui interviennent également dans la décomposition en facteurs premiers de "a".
- S'il y a des exposants impliqués, la valeur maximale d'un exposant pour toute base d'une puissance qui se trouve dans la décomposition en facteurs premiers de "t" est au plus égale à l'exposant de la même base qui est impliquée dans la décomposition en facteurs premiers de "a".
- Par example, 12 est un diviseur de 120 - le reste est égal à zéro en divisant 120 par 12.
- Examinons la décomposition en facteurs premiers des deux nombres et remarquons les bases et les exposants qui apparaissent dans la factorisation première des deux nombres :
- 12 = 2 × 2 × 3 = 22 × 3
- 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
- 120 contient tous les facteurs premiers de 12, et tous les exposants de ses bases sont supérieurs à ceux de 12.
- Si "t" est un diviseur commun de "a" et "b", alors la décomposition en facteurs premiers de "t" ne contient que les facteurs premiers communs impliqués dans la décomposition en facteurs premiers de "a" et "b ".
- S'il y a des exposants impliqués, la valeur maximale d'un exposant pour toute base d'une puissance qui se trouve dans la factorisation première de "t" est au plus égale au minimum des exposants de la même base qui est impliquée dans la factorisation première à la fois "a" et "b".
- Par example, 12 est un diviseur commun de 48 et 360.
- Le reste est égal à zéro lors de la division de 48 par 12 ou de 360 par 12.
- Voici la décomposition en facteurs premiers des trois nombres, 12, 48 et 360 :
- 12 = 22 × 3
- 48 = 24 × 3
- 360 = 23 × 32 × 5
- Veuillez noter que 48 et 360 ont plusieurs diviseurs : 2, 3, 4, 6, 8, 12, 24. Parmi eux, 24 est le plus grand commun diviseur, pgcd, de 48 et 360.
- Le plus grand commun diviseur, pgcd, de deux nombres, "a" et "b", est le produit de tous les facteurs premiers communs impliqués dans les factorisations premières de "a" et "b", multiplié par les exposants les plus bas.
- Sur la base de cette règle, on calcule le plus grand commun diviseur, pgcd, de plusieurs nombres, comme le montre l'exemple ci-dessous...
- pgcd (1.260 ; 3.024 ; 5.544) = ?
- 1.260 = 22 × 32
- 3.024 = 24 × 32 × 7
- 5.544 = 23 × 32 × 7 × 11
- Les facteurs premiers communs sont :
- 2 - son exposant le plus bas est : min.(2 ; 3 ; 4) = 2
- 3 - son exposant le plus bas est : min.(2 ; 2 ; 2) = 2
- pgcd (1.260 ; 3.024 ; 5.544) = 22 × 32 = 252
- Nombres premiers entre eux :
- Si deux nombres "a" et "b" n'ont pas d'autre diviseur commun que 1, pgcd (a ; b) = 1, alors les nombres "a" et "b" sont dits premiers entre eux.
- Les diviseurs du PGCD
- Si "a" et "b" ne sont pas premiers entre eux, alors chaque diviseur commun de "a" et "b" est aussi un diviseur du plus grand diviseur commun, pgcd, de "a" et "b".
Quelques articles concernant les nombres premiers