921.536 et 0 : Calculer tous les diviseurs communs des deux nombres (et les facteurs premiers). Calculateur en ligne

Les diviseurs communs des nombres 921.536 et 0 ?

Les diviseurs communs des nombres 921.536 et 0 sont tous les facteurs de leur 'plus grand commun diviseur', pgcd


Calculer le plus grand commun diviseur, pgcd:

Zéro est divisible par n'importe quel nombre autre que zéro (il n'y a pas de reste en le divisant par un autre nombre).

Le plus grand diviseur du nombre 921.536 est le nombre lui-même.


⇒ pgcd (921.536; 0) = 921.536




Pour trouver tous les diviseurs du 'pgcd', il faut le décomposer en facteurs premiers.

La décomposition en facteurs premiers (la factorisation première) d'un nombre : trouver les nombres premiers qui se multiplient ensemble pour former ce nombre.


921.536 = 26 × 7 × 112 × 17
921.536 n'est pas un nombre premier mais un composé.



* Les nombres naturels qui ne sont divisibles que par 1 et eux-mêmes sont appelés nombres premiers. Un nombre premier a exactement deux diviseurs : 1 et lui-même.
* Un nombre composé est un nombre naturel qui a au moins un autre diviseur que 1 et lui-même.



Multipliez les facteurs premiers du 'pgcd' :

Multiplier les facteurs premiers impliqués dans la décomposition en facteurs premiers (la factorisation première) du PGCD dans toutes leurs combinaisons uniques, qui donnent des résultats différents.


Considérez également les exposants des facteurs premiers (exemple : 32 = 3 × 3 = 9).


Ajoutez également 1 à la liste des diviseurs. Tous les nombres sont divisibles par 1.


Tous les diviseurs sont listés ci-dessous - par ordre croissant

La liste des diviseurs:

ni premier ni composé = 1
facteur premier = 2
22 = 4
facteur premier = 7
23 = 8
facteur premier = 11
2 × 7 = 14
24 = 16
facteur premier = 17
2 × 11 = 22
22 × 7 = 28
25 = 32
2 × 17 = 34
22 × 11 = 44
23 × 7 = 56
26 = 64
22 × 17 = 68
7 × 11 = 77
23 × 11 = 88
24 × 7 = 112
7 × 17 = 119
112 = 121
23 × 17 = 136
2 × 7 × 11 = 154
24 × 11 = 176
11 × 17 = 187
25 × 7 = 224
2 × 7 × 17 = 238
2 × 112 = 242
24 × 17 = 272
22 × 7 × 11 = 308
25 × 11 = 352
2 × 11 × 17 = 374
26 × 7 = 448
22 × 7 × 17 = 476
22 × 112 = 484
25 × 17 = 544
23 × 7 × 11 = 616
26 × 11 = 704
22 × 11 × 17 = 748
7 × 112 = 847
23 × 7 × 17 = 952
Cette liste continue ci-dessous...

... Cette liste continue d'en haut
23 × 112 = 968
26 × 17 = 1.088
24 × 7 × 11 = 1.232
7 × 11 × 17 = 1.309
23 × 11 × 17 = 1.496
2 × 7 × 112 = 1.694
24 × 7 × 17 = 1.904
24 × 112 = 1.936
112 × 17 = 2.057
25 × 7 × 11 = 2.464
2 × 7 × 11 × 17 = 2.618
24 × 11 × 17 = 2.992
22 × 7 × 112 = 3.388
25 × 7 × 17 = 3.808
25 × 112 = 3.872
2 × 112 × 17 = 4.114
26 × 7 × 11 = 4.928
22 × 7 × 11 × 17 = 5.236
25 × 11 × 17 = 5.984
23 × 7 × 112 = 6.776
26 × 7 × 17 = 7.616
26 × 112 = 7.744
22 × 112 × 17 = 8.228
23 × 7 × 11 × 17 = 10.472
26 × 11 × 17 = 11.968
24 × 7 × 112 = 13.552
7 × 112 × 17 = 14.399
23 × 112 × 17 = 16.456
24 × 7 × 11 × 17 = 20.944
25 × 7 × 112 = 27.104
2 × 7 × 112 × 17 = 28.798
24 × 112 × 17 = 32.912
25 × 7 × 11 × 17 = 41.888
26 × 7 × 112 = 54.208
22 × 7 × 112 × 17 = 57.596
25 × 112 × 17 = 65.824
26 × 7 × 11 × 17 = 83.776
23 × 7 × 112 × 17 = 115.192
26 × 112 × 17 = 131.648
24 × 7 × 112 × 17 = 230.384
25 × 7 × 112 × 17 = 460.768
26 × 7 × 112 × 17 = 921.536

921.536 et 0 ont 84 diviseurs communs:
1; 2; 4; 7; 8; 11; 14; 16; 17; 22; 28; 32; 34; 44; 56; 64; 68; 77; 88; 112; 119; 121; 136; 154; 176; 187; 224; 238; 242; 272; 308; 352; 374; 448; 476; 484; 544; 616; 704; 748; 847; 952; 968; 1.088; 1.232; 1.309; 1.496; 1.694; 1.904; 1.936; 2.057; 2.464; 2.618; 2.992; 3.388; 3.808; 3.872; 4.114; 4.928; 5.236; 5.984; 6.776; 7.616; 7.744; 8.228; 10.472; 11.968; 13.552; 14.399; 16.456; 20.944; 27.104; 28.798; 32.912; 41.888; 54.208; 57.596; 65.824; 83.776; 115.192; 131.648; 230.384; 460.768 et 921.536
dont 4 facteurs premiers: 2; 7; 11 et 17

Diviseurs, diviseurs communs, le plus grand commun diviseur, pgcd

  • Note 1 : La décomposition d'un nombre en facteurs premiers (la factorisation première d'un nombre) consiste à écrire un nombre naturel supérieur à 1 sous la forme d'un produit de nombres premiers.
  • Note 2 : 23 = 2 × 2 × 2 = 8. On dit 2 à la puissance 3 - ou - 2 exposant 3. Dans cet exemple, 3 est l'exposant et 2 la base. L'exposant indique combien de fois la base est multipliée par elle-même. 23 est la puissance et 8 est la valeur de la puissance.
  • Si le nombre "t" est un diviseur du nombre "a", alors dans la décomposition en facteurs premiers de "t", nous ne rencontrerons que des facteurs qui interviennent également dans la décomposition en facteurs premiers de "a".
  • S'il y a des exposants impliqués, la valeur maximale d'un exposant pour toute base d'une puissance qui se trouve dans la décomposition en facteurs premiers de "t" est au plus égale à l'exposant de la même base qui est impliquée dans la décomposition en facteurs premiers de "a".
  • Par example, 12 est un diviseur de 120 - le reste est égal à zéro en divisant 120 par 12.
  • Examinons la décomposition en facteurs premiers des deux nombres et remarquons les bases et les exposants qui apparaissent dans la factorisation première des deux nombres :
  • 12 = 2 × 2 × 3 = 22 × 3
  • 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
  • 120 contient tous les facteurs premiers de 12, et tous les exposants de ses bases sont supérieurs à ceux de 12.
  • Si "t" est un diviseur commun de "a" et "b", alors la décomposition en facteurs premiers de "t" ne contient que les facteurs premiers communs impliqués dans la décomposition en facteurs premiers de "a" et "b ".
  • S'il y a des exposants impliqués, la valeur maximale d'un exposant pour toute base d'une puissance qui se trouve dans la factorisation première de "t" est au plus égale au minimum des exposants de la même base qui est impliquée dans la factorisation première à la fois "a" et "b".
  • Par example, 12 est un diviseur commun de 48 et 360.
  • Le reste est égal à zéro lors de la division de 48 par 12 ou de 360 par 12.
  • Voici la décomposition en facteurs premiers des trois nombres, 12, 48 et 360 :
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • Veuillez noter que 48 et 360 ont plusieurs diviseurs : 2, 3, 4, 6, 8, 12, 24. Parmi eux, 24 est le plus grand commun diviseur, pgcd, de 48 et 360.
  • Le plus grand commun diviseur, pgcd, de deux nombres, "a" et "b", est le produit de tous les facteurs premiers communs impliqués dans les factorisations premières de "a" et "b", multiplié par les exposants les plus bas.
  • Sur la base de cette règle, on calcule le plus grand commun diviseur, pgcd, de plusieurs nombres, comme le montre l'exemple ci-dessous...
  • pgcd (1.260 ; 3.024 ; 5.544) = ?
  • 1.260 = 22 × 32
  • 3.024 = 24 × 32 × 7
  • 5.544 = 23 × 32 × 7 × 11
  • Les facteurs premiers communs sont :
  • 2 - son exposant le plus bas est : min.(2 ; 3 ; 4) = 2
  • 3 - son exposant le plus bas est : min.(2 ; 2 ; 2) = 2
  • pgcd (1.260 ; 3.024 ; 5.544) = 22 × 32 = 252
  • Nombres premiers entre eux :
  • Si deux nombres "a" et "b" n'ont pas d'autre diviseur commun que 1, pgcd (a ; b) = 1, alors les nombres "a" et "b" sont dits premiers entre eux.
  • Les diviseurs du PGCD
  • Si "a" et "b" ne sont pas premiers entre eux, alors chaque diviseur commun de "a" et "b" est aussi un diviseur du plus grand diviseur commun, pgcd, de "a" et "b".