Calculer le pgcd, le plus grand commun diviseur des nombres (159.285 ; 2.725). Calculatrice en ligne
Calculer le plus grand commun diviseur, pgcd (159.285; 2.725), en utilisant la décomposition en facteurs premiers, la divisibilité des nombres ou l'algorithme d'Euclide
Méthode 1. La décomposition en facteurs premiers (la factorisation première):
La décomposition en facteurs premiers (la factorisation première) d'un nombre : trouver les nombres premiers qui se multiplient ensemble pour former ce nombre.
159.285 = 3 × 5 × 7 × 37 × 41
159.285 n'est pas un nombre premier mais un composé.
2.725 = 52 × 109
2.725 n'est pas un nombre premier mais un composé.
* Les nombres naturels qui ne sont divisibles que par 1 et eux-mêmes sont appelés nombres premiers. Un nombre premier a exactement deux diviseurs : 1 et lui-même.
* Un nombre composé est un nombre naturel qui a au moins un autre diviseur que 1 et lui-même.
Calculer le plus grand commun diviseur:
Multipliez tous les facteurs premiers communs, pris par leurs plus petites puissances (exposants).
Le plus grand commun diviseur,
pgcd (159.285; 2.725) = 5
Les deux nombres ont des facteurs premiers communs.
Faites défiler vers le bas pour la 2ème méthode...
Méthode 2. L'algorithme d'Euclide:
Cet algorithme implique le processus de division des nombres et de calcul des restes.
'a' et 'b' sont les deux nombres naturels, 'a' >= 'b'.
Divisez 'a' par 'b' et obtenez le reste de l'opération, 'r'.
Si 'r' = 0, STOP. 'b' = le PGCD de 'a' et 'b'.
Sinon : Remplacez ('a' par 'b') et ('b' par 'r'). Revenez à l'étape ci-dessus..
Étape 1. Divisez le plus grand nombre par le plus petit:
159.285 : 2.725 = 58 + 1.235
Étape 2. Divisez le plus petit nombre par le reste de l'opération ci-dessus:
2.725 : 1.235 = 2 + 255
Étape 3. Diviser le reste de l'étape 1 par le reste de l'étape 2:
1.235 : 255 = 4 + 215
Étape 4. Diviser le reste de l'étape 2 par le reste de l'étape 3:
255 : 215 = 1 + 40
Étape 5. Diviser le reste de l'étape 3 par le reste de l'étape 4:
215 : 40 = 5 + 15
Étape 6. Diviser le reste de l'étape 4 par le reste de l'étape 5:
40 : 15 = 2 + 10
Étape 7. Diviser le reste de l'étape 5 par le reste de l'étape 6:
15 : 10 = 1 + 5
Étape 8. Diviser le reste de l'étape 6 par le reste de l'étape 7:
10 : 5 = 2 + 0
A cette étape, le reste est nul, donc on s'arrête:
5 est le nombre que nous recherchions - le dernier reste non nul.
C'est le plus grand commun diviseur.
Le plus grand commun diviseur:
pgcd (159.285; 2.725) = 5
Les deux nombres ont des facteurs premiers communs
Pourquoi doit-on calculer le plus grand commun diviseur ?
Une fois que vous avez calculé le plus grand diviseur commun du numérateur et du dénominateur d'une fraction, il devient beaucoup plus facile de simplifier la fraction le plus possible, à la fraction équivalente la plus simple, irréductible (le plus petit numérateur et dénominateur possible).
Autres opérations similaires avec le plus grand commun diviseur :