Calculer le pgcd, le plus grand commun diviseur des nombres (25 ; 25). Calculatrice en ligne

Calculer le plus grand commun diviseur, pgcd (25; 25), en utilisant la décomposition en facteurs premiers, la divisibilité des nombres ou l'algorithme d'Euclide

pgcd (25; 25) = 25 = 52

Les deux nombres sont égaux. Le plus grand diviseur d'un nombre est le nombre lui-même.

pgcd (n1; n1) = n1, où n1 peut être n'importe quel nombre naturel.


» Calculateur en ligne. Vérifier si un nombre est premier ou non. La décomposition en facteurs premiers (la factorisation première) des nombres composés


Le plus grand commun diviseur, pgcd. Qu'est-ce que c'est et comment le calculer

  • Note : La décomposition d'un nombre en facteurs premiers (la factorisation première d'un nombre) consiste à écrire un nombre naturel supérieur à 1 sous la forme d'un produit de nombres premiers.
  • Supposons que le nombre "t" divise le nombre "a" sans reste.
  • Lorsque nous examinons la factorisation première de "a" et "t", nous constatons que :
  • 1) tous les facteurs premiers de "t" sont aussi des facteurs premiers de "a"
  • et
  • 2) les exposants (puissances) des facteurs premiers de "t" sont égaux ou inférieurs aux exposants des facteurs premiers de "a" (voir la * note ci-dessous)
  • Par exemple, le nombre 12 est un diviseur du nombre 60 :
  • 12 = 2 × 2 × 3 = 22 × 3
  • 60 = 2 × 2 × 3 × 5 = 22 × 3 × 5
  • * Note: 23 = 2 × 2 × 2 = 8. On dit 2 à la puissance 3 - ou - 2 exposant 3. Dans cet exemple, 3 est l'exposant et 2 la base. L'exposant indique combien de fois la base est multipliée par elle-même. 23 est la puissance et 8 est la valeur de la puissance.
  • Si le nombre "t" est un diviseur commun des nombres "a" et "b", alors :
  • 1) "t" n'a que des facteurs premiers qui interviennent également dans la factorisation première de "a" et "b".
  • et
  • 2) chaque facteur premier de "t" a les plus petits exposants par rapport aux facteurs premiers des nombres "a" et "b".
  • Par exemple, le nombre 12 est le diviseur commun des nombres 48 et 360. Voici ci-dessous leur factorisation première :
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • Vous pouvez voir que le nombre 12 n'a que les facteurs premiers qui se produisent également dans la décomposition en facteurs premiers des nombres 48 et 360.
  • Vous pouvez voir ci-dessus que les nombres 48 et 360 contiennent plusieurs facteurs communs : 2, 3, 4, 6, 8, 12, 24. Parmi ceux-ci, 24 est le plus grand commun diviseur (pgcd) de 48 et 360.
  • 24 = 2 × 2 × 2 × 3 = 23 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • 24, le plus grand diviseur commun des nombres 48 et 360, est calculé comme le produit de tous les facteurs premiers communs des deux nombres, pris par les plus petits exposants (puissances).
  • Si deux nombres "a" et "b" n'ont pas d'autre diviseur commun que 1, pgcd (a, b) = 1, alors les nombres "a" et "b" sont appelés nombres premiers entre eux.
  • Si "a" et "b" ne sont pas premiers entre eux, alors chaque diviseur commun de "a" et "b" est un diviseur du plus grand commun diviseur de "a" et "b".
  • Prenons un exemple sur la façon de calculer le plus grand commun diviseur, pgcd, des nombres suivants :
  • 1.260 = 22 × 32
  • 3.024 = 24 × 32 × 7
  • 5.544 = 23 × 32 × 7 × 11
  • pgcd (1.260, 3.024, 5.544) = 22 × 32 = 252
  • Et un autre exemple :
  • 900 = 22 × 32 × 52
  • 270 = 2 × 33 × 5
  • 210 = 2 × 3 × 5 × 7
  • pgcd (900, 270, 210) = 2 × 3 × 5 = 30
  • Et encore un exemple :
  • 90 = 2 × 32 × 5
  • 27 = 33
  • 22 = 2 × 11
  • pgcd (90, 27, 22) = 1 - Les trois nombres n'ont pas de facteurs premiers en commun, ils sont premiers entre eux.