Comment simplifier la fraction 0/36.717 le plus possible, à la forme équivalente la plus simple, irréductible, avec le plus petit numérateur et dénominateur ?

Simplifiez la fraction 0/36.717 le plus possible

Zéro est divisible par n'importe quel nombre autre que lui-même

La fraction peut être simplifiée le plus possible:

0/36.717 = 0 : 36.717 = 0


Ecrire la fraction en pourcentage:

Multipliez la valeur de la fraction par la fraction 100/100


100/100 = 100 : 100 = 100% = 1

Multiplier un nombre par la fraction 100/100,
... et sa valeur ne changera pas.


0 =


0 × 100/100 =


(0 × 100)/100 =


0/100 =


0%


La fraction s'écrit...

Sous la forme d'un entier:
0/36.717 = 0

En pourcentage:
0/36.717 = 0%

Simplifier les fractions le plus possible, à leur fraction équivalente la plus simple, irréductible (le plus petit numérateur et dénominateur possible)

Étapes pour simplifier une fraction le plus possible :

  • 1) Décomposer en facteurs premiers (la factorisation première) le numérateur et le dénominateur de la fraction.
  • 2) Calculez le plus grand commun diviseur, pgcd, du numérateur et du dénominateur des fractions.
  • 3) Divisez le numérateur et le dénominateur de la fraction par PGCD.
  • La fraction ainsi obtenue est appelée fraction simplifiée au plus possible, à sa plus simple fraction équivalente, irréductible (celle qui a le plus petit numérateur et dénominateur possible).

Exemple : simplifier la fraction 315/1.155 le plus possible.

  • 1) Décomposer en facteurs premiers (la factorisation première) le numérateur et le dénominateur de la fraction.

  • Le numérateur de la fraction est 315, la décomposition en facteurs premiers est :
    315 = 3 × 3 × 5 × 7 = 32 × 5 × 7
  • Le dénominateur de la fraction est 1.155, la décomposition en facteurs premiers est :
    1.155 = 3 × 5 × 7 × 11.
  • 2) Calculez le plus grand commun diviseur, pgcd, du numérateur et du dénominateur des fractions.

  • Le plus grand commun diviseur, pgcd (315 ; 1.155), est calculé en multipliant tous les facteurs premiers communs du numérateur et du dénominateur, pris par leurs puissances les plus faibles (leurs exposants les plus faibles) :
  • PGCD (315; 1.155) = (32 × 5 × 7; 3 × 5 × 7 × 11) = 3 × 5 × 7 = 105
  • 3) Divisez le numérateur et le dénominateur de la fraction par PGCD.

  • Le numérateur et le dénominateur de la fraction sont divisés par le plus grand commun diviseur, PGCD :
  • 315/1.155 =
    (32 × 5 × 7)/(3 × 5 × 7 × 11) =
    ((32 × 5 × 7) : (3 × 5 × 7)) / ((3 × 5 × 7 × 11) : (3 × 5 × 7)) =
    3/11
  • La fraction ainsi obtenue est appelée fraction simplifiée le plus possible.

Why reducing (simplifying) fractions to lower terms?

  • When running operations with fractions we are often required to bring them to the same denominator, for example when adding, subtracting or comparing.
  • Sometimes both the numerators and the denominators of those fractions are large numbers and doing calculations with such numbers could be difficult.
  • By simplifying (reducing) a fraction, both the numerator and denominator of a fraction are reduced to smaller values, much easier to work with, this way reducing the overall effort.

Read the entire article ⇒ Completely reduce (simplify) fractions to the lowest terms: Steps and Examples