1 et 20 sont-ils premiers entre eux ? Calculatrice en ligne

Les nombres 1 et 20 sont-ils premiers entre eux ? La relation avec leur plus grand commun diviseur

1 et 20 sont premiers entre eux... si :

S'il n'y a pas d'autre nombre que 1 divisant les deux nombres sans reste. Ou...

Ou, en d'autres termes - si leur plus grand commun diviseur, pgcd, est 1.

Calculer le plus grand commun diviseur, pgcd, des nombres

1 n'est divisible que par lui-même. Le plus grand diviseur du nombre 1 est le nombre lui-même.

pgcd (1; n) = 1, où n peut être n'importe quel nombre naturel.


pgcd (1; 20) = 1


Nombres premiers entre eux (1; 20)? Oui.


Nombres premiers entre eux

  • Les nombres "a" et "b" sont dits premiers entre eux si le seul entier positif qui les divise tous les deux est 1.
  • Les nombres premiers sont des paires de (au moins deux) nombres qui n'ont pas d'autre diviseur commun que 1.
  • Lorsque le seul diviseur commun est 1, cela équivaut également à ce que leur plus grand commun diviseur soit 1.
  • Exemples de paires de nombres premiers entre eux :
  • Les nombres premiers entre eux ne sont pas nécessairement des nombres premiers, par exemple 4 et 9 - ces deux nombres ne sont pas premiers, ce sont des nombres composés, puisque 4 = 2 × 2 = 22 et 9 = 3 × 3 = 32. Mais le pgcd (4; 9) = 1, donc ils sont premiers entre eux,.
  • Parfois, les nombres premiers entre eux dans une paire sont eux-mêmes des nombres premiers, par exemple (3 et 5), ou (7 et 11), (13 et 23).
  • D'autres fois, les nombres qui sont premiers entre eux peuvent ou non être premiers, par exemple (5 et 6), (7 et 12), (15 et 23).
  • Exemples de paires de nombres qui ne sont pas premiers entre eux :
  • 16 et 24 ne sont pas premiers entre eux, puisqu'ils sont tous deux divisibles par 1, 2, 4 et 8 (1, 2, 4 et 8 sont leurs diviseurs communs).
  • 6 et 10 ne sont pas premiers entre eux, puisqu'ils sont tous deux divisibles par 2.
  • Quelques propriétés des nombres premiers entre eux :
  • Le plus grand commun diviseur de deux nombres premiers entre eux est toujours 1.
  • Le plus petit commun multiple, ppcm, de deux nombres premiers est toujours leur produit : ppcm (a, b) = a × b.
  • Le nombre 1 est le seul nombre naturel qui est premier avec chaque nombre, par exemple (1 et 2), (1 et 3), (1 et 4), (1 et 5), (1 et 6), etc. , sont tous des paires de nombres premiers entre eux puisque leur plus grand diviseur commun est 1.
  • Le nombre 1 est le seul nombre naturel premier avec 0.
  • Deux nombres premiers sont toujours premiers entre eux, par exemple (2 et 3), (3 et 5), (5 et 7) etc.
  • Deux nombres consécutifs sont premiers entre eux, par exemple (1 et 2), (2 et 3), (3 et 4), (4 et 5), (5 et 6), (6 et 7), (7 et 8), (8 et 9), (9 et 10), etc.
  • La somme de deux nombres premiers entre eux, a + b, est toujours première avec leur produit, a × b. Par exemple, 7 et 10 sont des nombres premiers entre eux, 7 + 10 = 17 est premier avec 7 × 10 = 70. Un autre exemple, 9 et 11 sont premiers entre eux, et leur somme, 9 + 11 = 20 est premier avec leur produit, 9 × 11 = 99.
  • Un moyen rapide de déterminer si deux nombres sont premiers entre eux est donné par l'algorithme d'Euclide : L'algorithme d'Euclide