Les deux nombres 1.774 et 999.999.999.892 sont-ils premiers entre eux (copremiers) ? Vérifiez si leur plus grand diviseur commun, pgcd, est égal à 1
Les nombres 1.774 et 999.999.999.892 sont-ils premiers entre eux ?
1.774 et 999.999.999.892 ne sont pas premiers entre eux...si :
S'il y a au moins un nombre autre que 1 qui divise les deux nombres sans reste. Ou...
Ou, en d'autres termes - si leur plus grand commun diviseur, pgcd, n'est pas 1.
Calculer le plus grand commun diviseur, pgcd, des nombres
Méthode 1. La décomposition en facteurs premiers (la factorisation première):
La décomposition en facteurs premiers (la factorisation première) d'un nombre : trouver les nombres premiers qui se multiplient ensemble pour faire ce nombre.
1.774 = 2 × 887
1.774 n'est pas un nombre premier mais un composé.
999.999.999.892 = 22 × 249.999.999.973
999.999.999.892 n'est pas un nombre premier mais un composé.
Les nombres qui ne sont divisibles que par 1 et eux-mêmes sont appelés nombres premiers. Un nombre premier n'a que deux diviseurs : 1 et lui-même.
Un nombre composé est un nombre naturel qui a au moins un facteur autre que 1 et lui-même.
Calculer le plus grand commun diviseur, pgcd:
Multipliez tous les facteurs premiers communs des deux nombres, pris par leurs plus petits exposants (puissances).
pgcd (1.774; 999.999.999.892) = 2 ≠ 1
Nombres premiers entre eux (1.774; 999.999.999.892)? Non.
Les deux nombres ont des facteurs premiers communs.
pgcd (1.774; 999.999.999.892) = 2 ≠ 1
Faites défiler vers le bas pour la 2ème méthode...
Méthode 2. L'algorithme d'Euclide:
Cet algorithme implique le processus de division des nombres et de calcul des restes.
'a' et 'b' sont les deux nombres naturels, 'a' >= 'b'.
Divisez 'a' par 'b' et obtenez le reste de l'opération, 'r'.
Si 'r' = 0, STOP. 'b' = le PGCD de 'a' et 'b'.
Sinon : Remplacez ('a' par 'b') et ('b' par 'r'). Revenez à l'étape ci-dessus..
Étape 1. Divisez le plus grand nombre par le plus petit:
999.999.999.892 : 1.774 = 563.697.857 + 1.574
Étape 2. Divisez le plus petit nombre par le reste de l'opération ci-dessus:
1.774 : 1.574 = 1 + 200
Étape 3. Diviser le reste de l'étape 1 par le reste de l'étape 2:
1.574 : 200 = 7 + 174
Étape 4. Diviser le reste de l'étape 2 par le reste de l'étape 3:
200 : 174 = 1 + 26
Étape 5. Diviser le reste de l'étape 3 par le reste de l'étape 4:
174 : 26 = 6 + 18
Étape 6. Diviser le reste de l'étape 4 par le reste de l'étape 5:
26 : 18 = 1 + 8
Étape 7. Diviser le reste de l'étape 5 par le reste de l'étape 6:
18 : 8 = 2 + 2
Étape 8. Diviser le reste de l'étape 6 par le reste de l'étape 7:
8 : 2 = 4 + 0
A cette étape, le reste est nul, donc on s'arrête:
2 est le nombre que nous recherchions - le dernier reste non nul.
C'est le plus grand commun diviseur.
pgcd (1.774; 999.999.999.892) = 2 ≠ 1
Nombres premiers entre eux (1.774; 999.999.999.892)? Non.
pgcd (1.774; 999.999.999.892) = 2 ≠ 1
Autres opérations similaires avec des nombres premiers entre eux :
Les deux nombres sont-ils premiers entre eux ?
Deux nombres naturels sont premiers entre eux - s'il n'y a pas de nombre qui divise les deux nombres sans reste, c'est-à-dire si leur plus grand commun diviseur, pgcd, est 1.
Deux nombres naturels ne sont pas premiers entre eux - s'il y a au moins un nombre qui divise les deux nombres sans reste, c'est-à-dire si leur plus grand commun diviseur, pgcd, n'est pas 1.