2.886 et 1.554 ne sont pas premiers entre eux...si :
- S'il y a au moins un nombre autre que 1 qui divise les deux nombres sans reste. Ou...
- Ou, en d'autres termes - si leur plus grand commun diviseur, pgcd, n'est pas 1.
Calculer le plus grand commun diviseur, pgcd, des nombres
Méthode 1. La décomposition en facteurs premiers (la factorisation première):
La décomposition en facteurs premiers (la factorisation première) d'un nombre : trouver les nombres premiers qui se multiplient ensemble pour faire ce nombre.
2.886 = 2 × 3 × 13 × 37
2.886 n'est pas un nombre premier mais un composé.
1.554 = 2 × 3 × 7 × 37
1.554 n'est pas un nombre premier mais un composé.
- Les nombres qui ne sont divisibles que par 1 et eux-mêmes sont appelés nombres premiers. Un nombre premier n'a que deux diviseurs : 1 et lui-même.
- Un nombre composé est un nombre naturel qui a au moins un facteur autre que 1 et lui-même.
Calculer le plus grand commun diviseur, pgcd:
Multipliez tous les facteurs premiers communs des deux nombres, pris par leurs plus petits exposants (puissances).
Étape 1. Divisez le plus grand nombre par le plus petit:
2.886 : 1.554 = 1 + 1.332
Étape 2. Divisez le plus petit nombre par le reste de l'opération ci-dessus:
1.554 : 1.332 = 1 + 222
Étape 3. Diviser le reste de l'étape 1 par le reste de l'étape 2:
1.332 : 222 = 6 + 0
A cette étape, le reste est nul, donc on s'arrête:
222 est le nombre que nous recherchions - le dernier reste non nul.
C'est le plus grand commun diviseur.
pgcd (2.886; 1.554) = 222 ≠ 1
Les nombres 2.886 et 1.554 sont-ils premiers entre eux ? Non.
pgcd (1.554; 2.886) = 222 ≠ 1