3.524 et 816 ne sont pas premiers entre eux...si :
- S'il y a au moins un nombre autre que 1 qui divise les deux nombres sans reste. Ou...
- Ou, en d'autres termes - si leur plus grand commun diviseur, pgcd, n'est pas 1.
Calculer le plus grand commun diviseur, pgcd, des nombres
Méthode 1. La décomposition en facteurs premiers (la factorisation première):
La décomposition en facteurs premiers (la factorisation première) d'un nombre : trouver les nombres premiers qui se multiplient ensemble pour faire ce nombre.
3.524 = 22 × 881
3.524 n'est pas un nombre premier mais un composé.
816 = 24 × 3 × 17
816 n'est pas un nombre premier mais un composé.
- Les nombres qui ne sont divisibles que par 1 et eux-mêmes sont appelés nombres premiers. Un nombre premier n'a que deux diviseurs : 1 et lui-même.
- Un nombre composé est un nombre naturel qui a au moins un facteur autre que 1 et lui-même.
Calculer le plus grand commun diviseur, pgcd:
Multipliez tous les facteurs premiers communs des deux nombres, pris par leurs plus petits exposants (puissances).
Étape 1. Divisez le plus grand nombre par le plus petit:
3.524 : 816 = 4 + 260
Étape 2. Divisez le plus petit nombre par le reste de l'opération ci-dessus:
816 : 260 = 3 + 36
Étape 3. Diviser le reste de l'étape 1 par le reste de l'étape 2:
260 : 36 = 7 + 8
Étape 4. Diviser le reste de l'étape 2 par le reste de l'étape 3:
36 : 8 = 4 + 4
Étape 5. Diviser le reste de l'étape 3 par le reste de l'étape 4:
8 : 4 = 2 + 0
A cette étape, le reste est nul, donc on s'arrête:
4 est le nombre que nous recherchions - le dernier reste non nul.
C'est le plus grand commun diviseur.
pgcd (3.524; 816) = 4 ≠ 1
Les nombres 3.524 et 816 sont-ils premiers entre eux ? Non.
pgcd (816; 3.524) = 4 ≠ 1