Calculer le plus grand commun diviseur
pgcd (3.100; 4.815) = ?
Méthode 1. La décomposition en facteurs premiers (la factorisation première):
La décomposition en facteurs premiers (la factorisation première) d'un nombre : trouver les nombres premiers qui se multiplient ensemble pour former ce nombre.
3.100 = 22 × 52 × 31
3.100 n'est pas un nombre premier mais un composé.
4.815 = 32 × 5 × 107
4.815 n'est pas un nombre premier mais un composé.
- Les nombres naturels qui ne sont divisibles que par 1 et eux-mêmes sont appelés nombres premiers. Un nombre premier a exactement deux diviseurs : 1 et lui-même.
- Un nombre composé est un nombre naturel qui a au moins un autre diviseur que 1 et lui-même.
Calculer le plus grand commun diviseur:
Multipliez tous les facteurs premiers communs, pris par leurs plus petites puissances (exposants).
Étape 1. Divisez le plus grand nombre par le plus petit:
4.815 : 3.100 = 1 + 1.715
Étape 2. Divisez le plus petit nombre par le reste de l'opération ci-dessus:
3.100 : 1.715 = 1 + 1.385
Étape 3. Diviser le reste de l'étape 1 par le reste de l'étape 2:
1.715 : 1.385 = 1 + 330
Étape 4. Diviser le reste de l'étape 2 par le reste de l'étape 3:
1.385 : 330 = 4 + 65
Étape 5. Diviser le reste de l'étape 3 par le reste de l'étape 4:
330 : 65 = 5 + 5
Étape 6. Diviser le reste de l'étape 4 par le reste de l'étape 5:
65 : 5 = 13 + 0
A cette étape, le reste est nul, donc on s'arrête:
5 est le nombre que nous recherchions - le dernier reste non nul.
C'est le plus grand commun diviseur.
Le plus grand commun diviseur:
pgcd (3.100; 4.815) = 5
Les deux nombres ont des facteurs premiers communs