Calculer le plus grand commun diviseur
pgcd (4.688; 2.246) = ?
Méthode 1. La décomposition en facteurs premiers (la factorisation première):
La décomposition en facteurs premiers (la factorisation première) d'un nombre : trouver les nombres premiers qui se multiplient ensemble pour former ce nombre.
4.688 = 24 × 293
4.688 n'est pas un nombre premier mais un composé.
2.246 = 2 × 1.123
2.246 n'est pas un nombre premier mais un composé.
- Les nombres naturels qui ne sont divisibles que par 1 et eux-mêmes sont appelés nombres premiers. Un nombre premier a exactement deux diviseurs : 1 et lui-même.
- Un nombre composé est un nombre naturel qui a au moins un autre diviseur que 1 et lui-même.
Calculer le plus grand commun diviseur:
Multipliez tous les facteurs premiers communs, pris par leurs plus petites puissances (exposants).
Étape 1. Divisez le plus grand nombre par le plus petit:
4.688 : 2.246 = 2 + 196
Étape 2. Divisez le plus petit nombre par le reste de l'opération ci-dessus:
2.246 : 196 = 11 + 90
Étape 3. Diviser le reste de l'étape 1 par le reste de l'étape 2:
196 : 90 = 2 + 16
Étape 4. Diviser le reste de l'étape 2 par le reste de l'étape 3:
90 : 16 = 5 + 10
Étape 5. Diviser le reste de l'étape 3 par le reste de l'étape 4:
16 : 10 = 1 + 6
Étape 6. Diviser le reste de l'étape 4 par le reste de l'étape 5:
10 : 6 = 1 + 4
Étape 7. Diviser le reste de l'étape 5 par le reste de l'étape 6:
6 : 4 = 1 + 2
Étape 8. Diviser le reste de l'étape 6 par le reste de l'étape 7:
4 : 2 = 2 + 0
A cette étape, le reste est nul, donc on s'arrête:
2 est le nombre que nous recherchions - le dernier reste non nul.
C'est le plus grand commun diviseur.
Le plus grand commun diviseur:
pgcd (4.688; 2.246) = 2
Les deux nombres ont des facteurs premiers communs