pgcd (79 ; 158) = ? Calculer le plus grand commun diviseur des nombres, pgcd, par deux méthodes : 1) La divisibilité des nombres et 2) La décomposition en facteurs premiers (factorisation première)
pgcd (79; 158) = ?
Méthode 1. La divisibilité des nombres:
Divisez le plus grand nombre par le plus petit.
Veuillez noter que lorsque les nombres sont divisés, le reste est égal à zéro:
158 : 79 = 2 + 0
⇒ 158 = 79 × 2
Ainsi, 158 est divisible par 79.
Et 79 est un diviseur de 158.
De plus, le plus grand diviseur de 79 est le nombre lui-même, 79.
Le plus grand commun diviseur,
pgcd (79; 158) = 79
158 est divisible par 79
Faites défiler vers le bas pour la 2ème méthode...
Méthode 2. La décomposition en facteurs premiers (la factorisation première):
La décomposition en facteurs premiers (la factorisation première) d'un nombre : trouver les nombres premiers qui se multiplient ensemble pour former ce nombre.
79 est un nombre premier et ne peut être décomposé en d'autres facteurs premiers.
158 = 2 × 79
158 n'est pas un nombre premier mais un composé.
* Les nombres naturels qui ne sont divisibles que par 1 et eux-mêmes sont appelés nombres premiers. Un nombre premier a exactement deux diviseurs : 1 et lui-même.
* Un nombre composé est un nombre naturel qui a au moins un autre diviseur que 1 et lui-même.
Calculer le plus grand commun diviseur:
Multipliez tous les facteurs premiers communs, pris par leurs plus petites puissances (exposants).
Le plus grand commun diviseur,
pgcd (79; 158) = 79
158 contient tous les facteurs premiers du nombre 79
158 est divisible par 79.
Pourquoi doit-on calculer le plus grand commun diviseur ?
Une fois que vous avez calculé le plus grand diviseur commun du numérateur et du dénominateur d'une fraction, il devient beaucoup plus facile de simplifier la fraction le plus possible, à la fraction équivalente la plus simple, irréductible (le plus petit numérateur et dénominateur possible).
Autres opérations similaires avec le plus grand commun diviseur :
Calculateur en ligne pour le plus grand commun diviseur, pgcd
Calculer le plus grand commun diviseur, pgcd, des nombres :
Méthode 1 : Décomposer les nombres en facteurs premiers (faire la factorisation première des nombres) - puis multiplier tous les facteurs premiers communs, pris par leurs plus petits exposants (puissances). S'il n'y a pas de facteurs premiers communs, alors pgcd est égal à 1.
Méthode 2 : L'algorithme d'Euclide.
Méthode 3 : La divisibilité des nombres.