1.886 et 8.108 ne sont pas premiers entre eux...si :
- S'il y a au moins un nombre autre que 1 qui divise les deux nombres sans reste. Ou...
- Ou, en d'autres termes - si leur plus grand commun diviseur, pgcd, n'est pas 1.
Calculer le plus grand commun diviseur, pgcd, des nombres
Méthode 1. La décomposition en facteurs premiers (la factorisation première):
La décomposition en facteurs premiers (la factorisation première) d'un nombre : trouver les nombres premiers qui se multiplient ensemble pour faire ce nombre.
1.886 = 2 × 23 × 41
1.886 n'est pas un nombre premier mais un composé.
8.108 = 22 × 2.027
8.108 n'est pas un nombre premier mais un composé.
- Les nombres qui ne sont divisibles que par 1 et eux-mêmes sont appelés nombres premiers. Un nombre premier n'a que deux diviseurs : 1 et lui-même.
- Un nombre composé est un nombre naturel qui a au moins un facteur autre que 1 et lui-même.
Calculer le plus grand commun diviseur, pgcd:
Multipliez tous les facteurs premiers communs des deux nombres, pris par leurs plus petits exposants (puissances).
Étape 1. Divisez le plus grand nombre par le plus petit:
8.108 : 1.886 = 4 + 564
Étape 2. Divisez le plus petit nombre par le reste de l'opération ci-dessus:
1.886 : 564 = 3 + 194
Étape 3. Diviser le reste de l'étape 1 par le reste de l'étape 2:
564 : 194 = 2 + 176
Étape 4. Diviser le reste de l'étape 2 par le reste de l'étape 3:
194 : 176 = 1 + 18
Étape 5. Diviser le reste de l'étape 3 par le reste de l'étape 4:
176 : 18 = 9 + 14
Étape 6. Diviser le reste de l'étape 4 par le reste de l'étape 5:
18 : 14 = 1 + 4
Étape 7. Diviser le reste de l'étape 5 par le reste de l'étape 6:
14 : 4 = 3 + 2
Étape 8. Diviser le reste de l'étape 6 par le reste de l'étape 7:
4 : 2 = 2 + 0
A cette étape, le reste est nul, donc on s'arrête:
2 est le nombre que nous recherchions - le dernier reste non nul.
C'est le plus grand commun diviseur.
pgcd (1.886; 8.108) = 2 ≠ 1
Les nombres 1.886 et 8.108 sont-ils premiers entre eux ? Non.
pgcd (1.886; 8.108) = 2 ≠ 1