2.220 et 5.025 ne sont pas premiers entre eux...si :
- S'il y a au moins un nombre autre que 1 qui divise les deux nombres sans reste. Ou...
- Ou, en d'autres termes - si leur plus grand commun diviseur, pgcd, n'est pas 1.
Calculer le plus grand commun diviseur, pgcd, des nombres
Méthode 1. La décomposition en facteurs premiers (la factorisation première):
La décomposition en facteurs premiers (la factorisation première) d'un nombre : trouver les nombres premiers qui se multiplient ensemble pour faire ce nombre.
2.220 = 22 × 3 × 5 × 37
2.220 n'est pas un nombre premier mais un composé.
5.025 = 3 × 52 × 67
5.025 n'est pas un nombre premier mais un composé.
- Les nombres qui ne sont divisibles que par 1 et eux-mêmes sont appelés nombres premiers. Un nombre premier n'a que deux diviseurs : 1 et lui-même.
- Un nombre composé est un nombre naturel qui a au moins un facteur autre que 1 et lui-même.
Calculer le plus grand commun diviseur, pgcd:
Multipliez tous les facteurs premiers communs des deux nombres, pris par leurs plus petits exposants (puissances).
Étape 1. Divisez le plus grand nombre par le plus petit:
5.025 : 2.220 = 2 + 585
Étape 2. Divisez le plus petit nombre par le reste de l'opération ci-dessus:
2.220 : 585 = 3 + 465
Étape 3. Diviser le reste de l'étape 1 par le reste de l'étape 2:
585 : 465 = 1 + 120
Étape 4. Diviser le reste de l'étape 2 par le reste de l'étape 3:
465 : 120 = 3 + 105
Étape 5. Diviser le reste de l'étape 3 par le reste de l'étape 4:
120 : 105 = 1 + 15
Étape 6. Diviser le reste de l'étape 4 par le reste de l'étape 5:
105 : 15 = 7 + 0
A cette étape, le reste est nul, donc on s'arrête:
15 est le nombre que nous recherchions - le dernier reste non nul.
C'est le plus grand commun diviseur.
pgcd (2.220; 5.025) = 15 ≠ 1
Les nombres 2.220 et 5.025 sont-ils premiers entre eux ? Non.
pgcd (2.220; 5.025) = 15 ≠ 1