22.482 et 2.187 ne sont pas premiers entre eux...si :
- S'il y a au moins un nombre autre que 1 qui divise les deux nombres sans reste. Ou...
- Ou, en d'autres termes - si leur plus grand commun diviseur, pgcd, n'est pas 1.
Calculer le plus grand commun diviseur, pgcd, des nombres
Méthode 1. La décomposition en facteurs premiers (la factorisation première):
La décomposition en facteurs premiers (la factorisation première) d'un nombre : trouver les nombres premiers qui se multiplient ensemble pour faire ce nombre.
22.482 = 2 × 32 × 1.249
22.482 n'est pas un nombre premier mais un composé.
2.187 = 37
2.187 n'est pas un nombre premier mais un composé.
- Les nombres qui ne sont divisibles que par 1 et eux-mêmes sont appelés nombres premiers. Un nombre premier n'a que deux diviseurs : 1 et lui-même.
- Un nombre composé est un nombre naturel qui a au moins un facteur autre que 1 et lui-même.
Calculer le plus grand commun diviseur, pgcd:
Multipliez tous les facteurs premiers communs des deux nombres, pris par leurs plus petits exposants (puissances).
Étape 1. Divisez le plus grand nombre par le plus petit:
22.482 : 2.187 = 10 + 612
Étape 2. Divisez le plus petit nombre par le reste de l'opération ci-dessus:
2.187 : 612 = 3 + 351
Étape 3. Diviser le reste de l'étape 1 par le reste de l'étape 2:
612 : 351 = 1 + 261
Étape 4. Diviser le reste de l'étape 2 par le reste de l'étape 3:
351 : 261 = 1 + 90
Étape 5. Diviser le reste de l'étape 3 par le reste de l'étape 4:
261 : 90 = 2 + 81
Étape 6. Diviser le reste de l'étape 4 par le reste de l'étape 5:
90 : 81 = 1 + 9
Étape 7. Diviser le reste de l'étape 5 par le reste de l'étape 6:
81 : 9 = 9 + 0
A cette étape, le reste est nul, donc on s'arrête:
9 est le nombre que nous recherchions - le dernier reste non nul.
C'est le plus grand commun diviseur.
pgcd (22.482; 2.187) = 9 ≠ 1
Les nombres 22.482 et 2.187 sont-ils premiers entre eux ? Non.
pgcd (2.187; 22.482) = 9 ≠ 1