595 et 2.639 ne sont pas premiers entre eux...si :
- S'il y a au moins un nombre autre que 1 qui divise les deux nombres sans reste. Ou...
- Ou, en d'autres termes - si leur plus grand commun diviseur, pgcd, n'est pas 1.
Calculer le plus grand commun diviseur, pgcd, des nombres
Méthode 1. La décomposition en facteurs premiers (la factorisation première):
La décomposition en facteurs premiers (la factorisation première) d'un nombre : trouver les nombres premiers qui se multiplient ensemble pour faire ce nombre.
595 = 5 × 7 × 17
595 n'est pas un nombre premier mais un composé.
2.639 = 7 × 13 × 29
2.639 n'est pas un nombre premier mais un composé.
- Les nombres qui ne sont divisibles que par 1 et eux-mêmes sont appelés nombres premiers. Un nombre premier n'a que deux diviseurs : 1 et lui-même.
- Un nombre composé est un nombre naturel qui a au moins un facteur autre que 1 et lui-même.
Calculer le plus grand commun diviseur, pgcd:
Multipliez tous les facteurs premiers communs des deux nombres, pris par leurs plus petits exposants (puissances).
Étape 1. Divisez le plus grand nombre par le plus petit:
2.639 : 595 = 4 + 259
Étape 2. Divisez le plus petit nombre par le reste de l'opération ci-dessus:
595 : 259 = 2 + 77
Étape 3. Diviser le reste de l'étape 1 par le reste de l'étape 2:
259 : 77 = 3 + 28
Étape 4. Diviser le reste de l'étape 2 par le reste de l'étape 3:
77 : 28 = 2 + 21
Étape 5. Diviser le reste de l'étape 3 par le reste de l'étape 4:
28 : 21 = 1 + 7
Étape 6. Diviser le reste de l'étape 4 par le reste de l'étape 5:
21 : 7 = 3 + 0
A cette étape, le reste est nul, donc on s'arrête:
7 est le nombre que nous recherchions - le dernier reste non nul.
C'est le plus grand commun diviseur.
pgcd (595; 2.639) = 7 ≠ 1
Les nombres 595 et 2.639 sont-ils premiers entre eux ? Non.
pgcd (595; 2.639) = 7 ≠ 1